
A product-line approach to database reporting

Felipe I. Anfurrutia, Oscar Díaz, Salvador Trujillo
ONEKIN Group. University of the Basque Country

PO Box: 649

20009 San Sebastián

Phone: +34 943 018 064

{felipe.anfurrutia, oscar.diaz, struji}@ehu.es

Abstract

Reporting for analysis is a common demand to
database programmers. Unlike dynamic data anal-
ysis, reporting tend to be foreseeable. Despite this
fact, staff waste their time programming similar re-
ports time and again, where reports are often built
from scratch with little if any reuse at all. Based on
the predictability and similarity among reports, this
work presents a product-line approach to database
reporting. The feature model, core assets and pro-
duction plan of the product line are sketched, and
the architecture discussed. The work was conducted
under a main requirement: data warehouse technol-
ogy was not available. Either the cost or the lack of
appropriate staff makes small-and-medium compa-
nies reluctant to use these sophisticated tools while
simple reporting is all they need. In this scenario,
the product-line approach can be a cost-effective so-
lution to achieve reuse.

1 Introduction

Many small organizations often access data for re-
porting directly from on-line transaction process-
ing (OLTP) systems. This approach can suffice if
sophisticated data analysis is not required, or re-
sources are not available. Data warehouse tech-
nology offers effective support for analysis but they
also imply qualified staff and equipment that small
organizations can not always afford.

Accessing the OLTP system directly for report-
ing incurs in two main limitations (apart from han-
dling of historical data and ETL issues). First, the
system performance for transactions is adversely af-

fected as now the very same data is used to feed both
OLTP and reporting applications.

An additional complexity associated with report-
ing directly from the source system is that the orga-
nization of the data is rarely intuitive to a business
user. The data has been stored to optimize data en-
try, not to optimize data access. This often leads to
devote specialized personnel to producing reports
for others in the organization. These team mem-
bers are increasingly relied upon to provide new and
modified reports, preventing them from completing
their assigned duties or forcing a department to ded-
icate staff to producing reports [12].

Unlike dynamic data analysis, reporting tend to
be foreseeable. Based on the predictability and sim-
ilarity among reports, this work presents a product-
line approach to database reporting. Software Prod-
uct Lines (SPLs) are defined as “a set of software-
intensive systems, sharing a common, managed set
of features that satisfy the specific needs of a par-
ticular market segment or mission and that are de-
veloped from a common set of core assets in a pre-
scribed way” [6].

A report family is then a set of reports that share
some commonalities. The product-line designer
should strive to apprehend this commonality as well
as identifying their differences. A given report is
then a product of this line where a report is charac-
terized by the data used, its layout and its format.

The requirement of the system follows:

1. no data warehouse technology is available. Ei-
ther the cost or the lack of appropriate staff
makes small-and-medium companies reluctant
to use these sophisticated tools while simple



reporting is all they need.

2. detaching as much as possible reporting from
the database itself. To this end, cubes are ex-
tracted and saved as XML files. Then, cubes
are conceived as a kind of data cache [1]. A
elapsedTime feature is added. This feature
capture the maximum elapsed time. Based on
our experience, this elapsed time tend to be
larger enough to allow to re-calculate the cube
in batch mode (i.e. normally this implies to run
the query at night). Note that in small organi-
zations the volume of data is small enough to
make this viable.

3. promoting self-service reporting for end users.

Implementation wise, the system makes intensive
use of XML technologies. All, the data cube
(XCube [13]), the feature model (XML-based [3]),
the formatter (XSL [17]) and the build process (Ant
[9, 16]) are all described using XML vocabularies.
This makes the system platform-independent, and
provides a good example of the increasing useful-
ness of XML.

The rest of the paper is structured as follows.
Section 2 presents a sample case. Section 3 outlines
product lines. Section 4 and 5 introduce the feature
model and the core assets of the reporting product
line, respectively. Finally, section 6 discusses and
section 7 concludes the paper.

2 The sample case

This work has been conducted for the TRACELIA
system which addresses the management of the in-
formation flows in manufacturing plants. Aspects
of the production process to be controlled include
production-process monitoring, machine-level in-
ventory control or maintenance control. An exam-
ple of an analytical query in this scenario is: "give
me the total elapsed time per state for machines of
all sections by state category during march 2005"
where “state” refers to whether the machine was
idle, out of order and the like. Figure 1 shows a
sample report, where states are labeled as “lack of
air” (“Falta de aire”), “lack of water” (“Falta de
agua”), etc.

The analysis requires first to identify the subject
of the analysis: the fact. In our case, this cor-
responds to machine-transition events, i.e. entries

Figure 1: A product-manufacturing report sample for a
Spanish customer

Figure 2: A ME/R model for the data cube



Figure 3: Cube metaphor

submitted by controllers where the machine leaves
a state and notifies the time spent in the salient state.
This fact is described through measures (quantify-
ing data). For our sample problem, the measures
include the elapsed time in the state, the weight or
the number of persons while in this state. Figure
2 illustrates the conceptual model for this example
using the ME/R diagram [15]. This notion depicts
the measures as attributes of the fact relationship
(depicted as a big diamond in figure 2).

These facts can then be analyzed along the fol-
lowing dimensions: time, the machine and the state
category. Dimensions allow for distinct degrees of
granularities in the analysis. This classification hi-
erarchies are used for the structuring of dimensions
along levels (e.g. year, month, day). Different lev-
els correspond to different data granularities (e.g.
daily figures vs. monthly figures) and ways of clas-
sification (e.g. distribution of machine state along
time vs. distribution of machine by state). Level A
rolls up to a level B if a classification of the elements
of A according to the elements of B is semantically
meaningful to the application (e.g. the level days
rolls up to month; machine in state error1 rolls up
to state outOfOrder).

ME/R uses the roll-up relationship to link the
distinct granularity levels for a given dimension.
Each dimension is represented by a subgraph that
starts at the corresponding finest level (e.g. day for
the time dimension).

The multidimensional design sketched in previ-
ous paragraphs, sets the analysis space. The report
in figure 1 shows a concrete case where the measure
duration is analyzed along the state and machine di-
mensions. Often a cube metaphor is used to rep-
resent this data view as shown in figure 3. In the
metaphor, axes stands for dimensions whereas cells
contain the measures.

Hence, for the point of view of this work, a report
can be described as the rendering (i.e. format and
layout properties) of a given data cube along a set
of dimensions , i.e.

report = data cube + dimension + ren-
dering

This work aims at a self-service reporting system,
using product-line techniques to attain this objec-
tive.

3 A brief on software product lines

A Software Product Line is “a set of software-
intensive systems sharing a common, managed set
of features that satisfy the specific needs of a par-
ticular market segment or mission and that are de-
veloped from a common set of core assets in a pre-
scribed way” [6]. Software product lines give you
economies of scope, which means that you take eco-
nomic advantage of the fact that many of your prod-
ucts are very similar not by accident, but because
you planned in that way.

The differences among possible products in the
product line can be discussed in terms of features.
A feature is a "product characteristic that is used
in distinguishing products within a family of related
products" [2]. Features are organized into feature
groups, which in turn conform a composition hier-
archy. Consequently, a software product line must
support variability for those features that tend to dif-
fer from product to product.

Features are a main input to core asset develop-
ment. Feature realization mandates variability sup-
port for core assets. However, core-asset construc-
tion should not be confused with product develop-
ment. A production plan is “a description of how
core assets are to be used to develop a product in
a product line” [4]. For our sample case, this plan
includes:

� selection of the features of the desired product,
which has to be manufactured,

� realization of the variability by refining core
assets to accomplish selected features,

� construction of the product by executing a
scripting (realized as the build.xml file), which
is depicted in figure 6 and described in section
5.3. Thus, final report product is obtained.



Figure 4: A feature model for database reporting using [5]
notation.

Next sections outlines the feature model, the main
core assets and the production process of the report-
ing product line (RPL).

4 RPL: the feature model

A feature model provides an abstract and concise
syntax for expressing commonality and variability
in a specific domain (e.g. database reporting). To
attain this, a reuse-oriented analysis of the domain
is conducted [8, 11].

The feature model for RPL is depicted in figure
41. Features are annotated with cardinalities [14]
(e.g. [1..*], [2..2]2). For database reporting the fol-
lowing feature groups are identified:

� Analytical dimension. It specifies the analyt-
ical dimensions involved for the sample prob-
lem. This group is obtained from the multi-
dimensional model (see figure 2) where the di-
mension’s finest levels correspond to features3.

1For a complete account on feature modeling refer to [7, 14,
10]. [3] gives an XML vocabulary for feature specification.

2Mandatory and optional features can be considered special
cases of features with the cardinalities [1..1] and [0..1], respec-
tively.

3If no dimension is selected, the report is reduced to a single
value (e.g. total duration regardless of the machine, time and state
category ). If one is selected, the report is a row of values. If more
that one is selected, the report turns into multi-dimensional.

� CubeCell. This feature includes both the mea-
sure to be obtained (e.g. duration, numberOf-
Persons, weight) and the aggregated function
to be used (e.g. sum, min, average, etc).

� Style. It establishes the look-and-feel of the
report. It is similar to the functionality offered
by Excel to render the data of a spreadsheet.
Alternatives include: classic and modern.

� OutputFormat. It indicates the format of de-
livery. Alternatives include: pdf and xhtml.

5 RPL: the core assets

A Core Asset is "an artifact or resource that is used
in the production of more than one product in a soft-
ware product line" [6]. A core asset may be an ar-
chitecture, a software component, a process, a doc-
ument, or any other useful result of building a sys-
tem. Next, the main RPL core assets are introduced.

5.1 The dataCube manager asset

This approach does not rely on the existence of
a proper data warehouse. Rather analysis is con-
ducted directly from OLTP data. This can jeopar-
dize the efficiency of operational transactions since
they must compete with analysis queries. More-
over, OLTP databases are design to optimize OLTP
transactions where tables are designed and termed
focusing on effective programming rather than fa-
cilitating analysis.

These observations vindicate the need of a kind
of “materialized view” where data is engineered for
analysis. Due to both the lack of this functionality
in some Database Management Systems (DMBSs),
and to decouple the DBMS from the RPL, a core
asset is defined for materialized-view support: the
dataCube asset.

The dataCube asset includes a definition of the
multidimensional schema, a proxy to the DBMS,
and the data cube itself which contains the data.
To achieve interoperability, the XCube4 proposal
was used. XCube [13] is an open, manufacturer-
independent and XML-based family of document
templates to store, exchange and query data ware-
house data. This proposal includes XCubeSchema

4http://www.xcube-open.org/



Figure 5: The fact data of the dataCube using XCubeFacts
vocabulary

& XDimension for multidimensional schema de-
scription (see figure 2), and XCubeFacts to describe
the fact data. Figure 5 shows an XCubeFacts file for
the data cube of our sample problem.

One disadvantage of using XML for exchanging
data cubes is the fact that XML documents tend to
be rather large. But with constantly growing net-
work bandwidth, being in a local setting, and the
use of compression methods in mind the advantages
prevail. This advantage include interoperability and
the existence of a broad range of tools for XML pro-
cessing.

5.2 The formatter stylesheet

The formatter.xsl asset is in charge of both defin-
ing a page layout and giving a style format to the
data. Thus, this asset is used for building the first
outline of the report called pre-report.fo document.
The pre-report.fo document is described using the
known XSL-FO5 vocabulary. This vocabulary is
a device independent format, which helps to carry
forward the variability on the output format of the
report.

5.3 The script

Figure 6 illustrates how the build process is real-
ized by several steps, which are necessary in order

5http://www.w3.org/TR/xsl/

to create a single report:

� Extractor. A query (query.cql) is performed
on the cached cube (data.xcb) in order to
gather only the required data (data.xml), de-
pending on the features that identifies a prod-
uct.

� Formatter. This step transforms the ob-
tained dataCube (data.xml) in a first outline
(pre-report.fo), applying the formatter.xsl doc-
ument for that.

� Renderer. This outline (pre-report.fo) is ren-
dered using selected output format.

The build process is represented by an Ant docu-
ment. Ant is a Java-based tool for scripting build
processes [9, 16]. Scripts are specified using XML
syntax, and often named build.xml.

6 Discussion

A product is distinguished by the set of features it
realizes. For instance, the report shown in figure 1
can be characterized as being a PDF report using a
classic rendering of the total duration fact set up by
two dimensions, namely, state (their categories) and
machine (machineId and location). The number of
the distinct products (i.e. reports) that a product line
is capable of producing can be obtained as the mul-
tiplication of the distinct compatible features of the
product line. In our example, the RPL can generate
more than one hundred distinct reports.

The important point to note is that new reports
are no built from scratch but from a common set of
core assets. Table 1 summarizes which core assets
affect which features. In this case, the impact can
imply to change a configuration parameter (e.g. the
aggregate function to be used), to add a new plug-in
(for the output feature) or to extend the XSLT tem-
plates (for the style feature). Notice that the product
process itself can need to be changed to accommo-
date some features.

However, the question is what if the end user
wants a report outside the product-line realm, i.e.
with a feature not included in the feature model? It
should be said that the domain analysis conducted
as part of the product-line development aims at fore-
seen the distinct requirements from which only a



Figure 6: A build process for database report

dataCube formatter script

Dimension
machine X X

state X X

date X X

Function X X

Fact X X

duration X X

#ofPersons X X

weight X X

Style
classic X

modern X

Output
pdf X

html X

Table 1: Features vs Core Assets

subset are selected to be finally supported by the
product line (e.g. due to strategic or cost effective
reasons). Even though, product lines could need to
be revised, although wishfully at a distinct pace than
traditional software. But even in this case, the sep-
aration of concerns that characterized product-line
architectures facilitates extensions.

This project also makes an intensive use of XML
throughout all the development of the product line.
This accounts for a cohesive framework: all, core
assets, the production plan, and the feature model
itself are described using XML vocabularies. In this
case, the use of a single technology speed up the
construction of the product-line framework.

An interesting twist, no investigated yet, is the

storage of the product-line artifacts. Being XML,
these artifacts are liable to be stored in the database.
Specifically, our implementation uses Oracle which
support the XMLType. A RPL table is defined which
holds a set of XMLType attributes that describe the
distinct roles that the kept document plays. Be-
ing a database, SQL can be used to administer the
RPL. For instance, SELECT can be used to retrieve
whether a given report can be generated whereas
GRANT facilities can be used to handle access
control among programmers of the reporting line.
Rather than the data itself, now a database is used
as a repository of the artifacts of the reporting line.

7 Conclusions

Product lines offer a cost-effective solution to arti-
fact reuse. This paper shows a case for database
reporting. The system was built under three main
requirements, namely, no use of data warehouse
technology, detaching as much as possible reporting
from the database itself, and promoting self-service
reporting for end users.

The system has been fully implemented.
Database programmers already enjoy the reuse
gains brought by the product-line approach. Report
reuse has greatly been improved. Unfortunately,
there is not yet any feedback from end users at the
time of this writing that could back the usefulness
of this approach from their perspective, and to
which extend has their autonomy from technical
staff being fulfilled.

Acknowledgements
This work was partially supported by the Span-

ish Science and Education Ministry (MEC) under
contract TIC2002-01442. Salvador Trujillo enjoys



a doctoral grant for the MEC. Our gratitude to Rosa
Dunis and Unai Bergara from Mondragón Sistemas
de Información, Soc. Coop. for sharing with us
their insights about reporting in SME, and provid-
ing a case for Tracelia.

References

[1] J. Albrecht, A. Bauer, O. Deyerling,
H. Günzel, W. Hümmer, W. Lehner, and
L. Schlesinger. Management of multidi-
mensional aggregates for efficient online
analytical processing. In IDEAS ’99: Pro-
ceedings of the 1999 International Symposium
on Database Engineering & Applications,
page 156, Washington, DC, USA, 1999. IEEE
Computer Society.

[2] D. Batory, J.Neal Sarvela, and
A. Rauschmayer. Scaling Step-Wise Re-
finement. IEEE Transactions on Software
Engineering, 30(6):355–371, June 2004.

[3] V. Cechticky, A. Pasetti, O. Rohlik, and
W. Schaufelberger. Xml-based feature mod-
elling. In Software Reuse: Methods, Tech-
niques and Tools: 8th International Confer-
ence, ICSR 2004, Madrid, Spain, July 5-9,
2009. Proceedings, volume 3107 of Lecture
Notes in Computer Science, pages 101–114.
Springer, 2004.

[4] G. Chastek and J.D. McGregor. Guidelines
for Developing a Product Line Production
Plan. Technical report, CMU/SEI, June 2002.
CMU/SEI-2002-TR-06.

[5] M. Clauss. Modelling Variability with
UML. In Proceedings of Young Re-
searchers Workshop GCSE’01, the Third In-
ternational Symposium on Generative and
Component-Based Software Engineering, En-
furt,Germany, September 2001.

[6] P. Clements and L.M. Northrop. Soft-
ware Product Lines - Practices and Patterns.
Addison-Wesley, 2001.

[7] K. Czarnecki and U. Eisenecker. Generative
Programming. Addison-Wesley, 2000.

[8] K. Kang et Al. Feature Oriented Domain
Analysis Feasability Study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineer-
ing Institute, November 1990.

[9] Apache Software Foundation. Apache Ant.
http://www.ant.apache.org/.

[10] H. Gomaa. Designing Software Product Lines
with UML. Addison-Wesley, 2004.

[11] Martin L. Griss. Implementing Product-Line
Features with Component Reuse. In Proceed-
ings of the Sixth International Conference on
Software Reuse, pages 137–152, Vienna, Aus-
tria, June 2000.

[12] A. Grohe. Reporting Architectures, 2002.
"http://www.dmreview.com /article_sub.cfm?
articleId=4903".

[13] W. Hümmer, A. Bauer, and G. Harde. Xcube:
Xml for data warehouses. In DOLAP
2003, ACM Sixth International Workshop on
Data Warehousing and OLAP, New Orleans,
Louisiana, USA, November 7, 2003, Proceed-
ings, pages 33–40. ACM, 2003.

[14] K.Czarnecki, S.Helsen, and U.W.Eisenecker.
Staged Configuration Using Feature Models.
In Software Product Lines, Third Interna-
tional Conference on Software Product Lines,
SPLC 2004, pages 266–283, 2004.

[15] C. Sapia, M. Blaschka, G. Höfling, and
B. Dinter. Extending the E/R Model for the
Multidimensional Paradigm. In Int. Work-
shop on Data Warehousing and Data Mining
(DWDM 98), Singapore, volume 1552 of Lec-
ture Notes in Computer Science, pages 105–
116. Springer, 1998.

[16] N. Serrano and I. Ciordia. Ant: Automating
the Process of Building Applications. IEEE
Software, 21(6):89–91, November/December
2004.

[17] W3C. XSL eXtensible Style Language Trans-
formations (XSLT) Working Draft Version
2.0, 2005. http://www.w3.org/TR/xslt20/.


