
Testing MOFScript transformations with

HandyMOF

Jokin García, Maider Azanza, Arantza Irastorza, Oscar Díaz

Onekin Research Group, University of the Basque Country (UPV/EHU)
San Sebastian (Spain)

(jokin.garcia,maider.azanza,arantza.irastorza, oscar.diaz)@ehu.es

Abstract. Model transformation development is a complex task. There-
fore, having mechanisms for transformation testing and understanding
becomes a matter of utmost importance. Understanding, among oth-
ers, implies being able to trace back bugs to their causes. In model
transformations, causes can be related with either the input model or
the transformation code. This work describes HandyMOF, a tool that
�rst eases the transition between the e�ect (i.e. generated code �le) and
the causes (i.e. input model and transformations) and then provides the
means to check the transformation coverage obtained by a test suite.
The challenges are twofold. First, the obtainment of input model suites
which yield to a quanti�able transformation coverage. Second, providing
�ne-grained traces that permit to trace back code not just to the trans-
formation rule but to the inner 'print' statements. A transformation that
generates Google Web Toolkit (GWT) code is used as the running exam-
ple.

1 Introduction

Transformations rest at the core of Model Driven Engineering (MDE). As any
other piece of software, transformations need to be designed, programmed and
tested. This last step becomes even more important if we consider that each
transformation can potentially generate multiple applications, to which its errors
would be propagated [15].

Nevertheless, testing model transformation has proved to be a tough chal-
lenge [1]. Compared to program testing, model transformation testing encounters
additional challenges which include the complex nature of model transformation
inputs and outputs, or the heterogeneity of model transformation languages
[17]. To face this situation, both black-box techniques [3,5,16] and white-box
techniques [6,8,10] have been proposed. These two approaches are complemen-
tary and should be carried out in concert. In black-box techniques the challenge
rests on coming up with an adequate set of input models. On the other hand,
white-box techniques capture the mechanics of the transformation by covering
every individual step that makes it up [1]. We concentrate on the latter, partic-
ularly focusing on Model-to-Text (M2T) transformations, which have received
little attention. Speci�cally, MOFScript language 1 is used along the paper.

1 http://modelbased.net/mofscript/



The drawback of white-box testing approaches is that they are tightly cou-
pled to the transformation language and would need to be adapted or completely
rede�ned for another transformation language [1]. While standards [14] or well
established languages [9] exist in Model-to-Model (M2M) transformation lan-
guages, the situation is more blurred in M2T transformations. This is the reason
why, while aiming at the same goals as white-box testing (i.e., covering every
step of the transformation), we opted to realize it using a mixed approach. The
model test suite is generated using black-box techniques and then both input
models and the generated code are traced to the transformation. The purpose is
twofold: (1) if a bug is detected in the generated code, it can be traced back to
the transformation line that generated it, and (2) the transformation coverage
obtained by the model test suite can be calculated based on transformation lines
being transited.

Consequently our approach heavily rests on trace models. Broadly, trace mod-
els need to capture a ternary relationship between the source model elements,
the transformation model elements, and the generated code. We chose MOF-
Script as the M2T transformation language as it already supports traceability
between source model elements and locations in generated text �les [12]. That is,
it is possible to trace back the generated code from the source elements. Unfor-
tunately, the third aspect (i.e. the transformation model elements) is captured
at a coarse-grained granularity: the transformation rule. This permits coverage
analysis to be conducted at the rule level (i.e., have all transformation rules been
enacted?) but it fails to provide a deeper look inside rules' code. It would be
similar to programming language testing stopping at the function calls without
peering within the function body. Transformation rules might in themselves be
complex functions where conditional statements and loops abound. Rule-based
coverage might then fail to consider the diversity of paths which are hidden in
the rule's body.

On these grounds, we complement MOFScript's native trace model with
a second model that enables traceability between �ne-grained transformation
elements (e.g., 'print' and 'println' statements) and locations in generated text
�les. An algorithm is introduced to aggregate trace models to ascertain which
'print' statements have not yet been visited during testing so that designers
can improve their testing model suites to obtain full coverage. These ideas are
realized in HandyMOF, a debugger for MOFScript transformations. A video of
MOFScript at work is available2. We start by setting the requirements.

2 Setting the Requirements

A common methodology for code testing generally comprises a number of well
known steps: the creation of input test cases (i.e., the test suite), running the
software with the test cases, and �nally, analyzing the goodness of the results.
Next paragraphs describe some of the challenges brought by transformation test-
ing.

2 http://onekin.org/downloads/public/screencasts/handyMOF



Fig. 1. Input map model and desired output

Creation of test suites. Obtaining the appropriate test suites becomes
critical to ensure that all the transformation variations are covered, and hence,
representative code samples are obtained. So far, di�erent proposals have been
made for black-box testing of transformations, based on metamodel coverage
[4,16]. Speci�cally, Pramana is a tool that implements black-box testing by au-
tomatically generating 'model suites' for metamodel coverage [16].

1    var index:Integer = 1;
2    ec.Map::main() {
3      [...]
4      f.println("public void onModuleLoad() {"); 
5      f.println("MapWidget map = new MapWidget();");
6      f.println("map.setSize(\"1000\", \"500\");");
7      f.println("map.setZoomLevel(14);");
8      ec.objectsOfType(ec.Address)->forEach(ecc:ec.Address) {
9        ecc.address();
10    }
11    f.println("RootPanel.get(\"mapContainer\").add(map);");
12    f.println(" }");
13  }
14  ec.Address::address(){
15    f.println("LatLng point"+ index +"= LatLng.newInstance(" + self.latitude + "," + self.longitude + ");");
16    f.println("MarkerOptions markeroptions" + index + " = MarkerOptions.newInstance();");
17    f.print("markeroptions" + index + ".setTitle(\"" + self.name + ", " + self.description);
18    if(self.description = "restaurant"){
19      f.print(", " + self.telephone);
20    }
21    f.println("\");");
22    f.println("Marker marker" + index + " = new Marker(point" + index + ", markeroptions" + index + ");");
23    f.println("LatLng sw" + index + " = LatLng.create("+self.latitude +","+self.longitude+");");
24    f.println("LatLng ne" + index + " = LatLng.create("+ self.latitude +","+self.longitude +");");
25    self.pictures->forEach(pic){
26      f.println("LatLngBounds bounds"+index+" = LatLngBounds.create(sw"+index+", ne"+index+");");
27      f.println("GroundOverlay go"+index+" = new GroundOverlay(\""+  pic +"\", bounds"+index+");");
28      f.println("map.addOverlay(go" + index + ");");
29    }
30    f.println("map.addOverlay(marker" + index + ");");
31 index += 1; }}

Fig. 2. Map2GWT transformation

However, black-box testing approaches do not guarantee that the generated
samples cover all the branches of the transformation. This calls for tools like
Pramana to be complemented with white-box testing approaches where the un-
veiling of the transformation code provides additional input to obtain the test
suite.



Map

-latitude : float
-longitude : float
-description : string
-telephone : string
-downtown : bool
-name : string
-pictures[ ] : string

Address

1
-addresses0..*

Fig. 3. Map
metamodel

As an example, consider a model that is transformed to
markers in Google maps (see Figure 1). Markers represent
Points of Interest (POI). A conference page contains the loca-
tions of the venue and the main hotels or restaurants available
in the area. Those markers are captured through a Map meta-
model (Figure 3). Transformation rules are de�ned to handle
the two elements of the Map metamodel, namely, Map and
Address. The output is a Google map where markers are de-
picted together with their pictures, if available. Besides, if the
marker stands for a restaurant, the phone is shown as part
of the marker's content. This last rule illustrates the need for
white-box testing. The signi�cance of 'restaurant' as a key
value for changing the transformation �ow cannot be ascer-
tained from the string-typed property 'place'. Therefore, the
use of metamodel-based test suite generators like Pramana
does not preclude the need to check that all paths of the trans-
formation have been traversed.

Analyzing the goodness of the results. In the testing literature, an or-
acle is a program, process or body of data that speci�es the expected outcome
for a set of test cases as applied to a tested object [2]. Oracles can be as sim-
ple as a manual inspection or as complex as a separate piece of software. We
focus on assisting manual inspection. This requires means for linking code back
to generators (i.e., MOFScript rules), and vice versa. MOFScript's native trace
model provides such links at the rule level. However, a rule-based granularity
might not be enough. The address rule (see Figure 2 - lines 14-31) illustrates
how transformation complexity is tied to the complexity of the metamodel el-
ement to be handled or the logic of the transformation itself. This results in
'print' statements being intertwined along control structures such as iterators
and conditionals. A rule-based granularity encloses the whole output within a
single trace, failing to indicate the rule's paths being transited. A print-based
granularity will account for a �ner inspection of the transformation code. This
in turn, can redound to the bene�t of coverage analysis and code understanding.
This sets the requirement for �ne-grained traces.

3 The HandyMOF Tool

The previous section identi�es two main requirements: semi-automatic construc-
tion of test suites, and �ne-grained linkage between transformations and gener-
ated code. These requirements guide the development of HandyMOF, a debugger
for MOFScript included as part of Eclipse (see Figure 4). The canvas of Handy-
MOF is basically divided in two areas:

� con�guration area, where the testing scenario is de�ned. This includes: (1)
the project folder, (2) the transformation to be debugged (obtained from the
transformation folder in the project), and (3), the input model to be tested
(obtained from the trace models that link to the chosen transformation).



Fig. 4. HandyMOF as a debugger assistant: from transformation to code

� inspection area. Previous con�guration accounts for a transformation enact-
ment that can output one or more code �les. The inspection area permits
to peer at both the transformation and the code �les. The output re�ects
a single transformation enactment (the one with the input model at hand).
Figure 5 shows the case for the input model Map_1.xmi. In this case, only
one code �le is generated (i.e. GoogleMapsExample.java). Additional code
�les would have been rendered through additional tabs.

The added value of HandyMOF basically rests on two utilities. First, it permits
to selectively peer at the generated code. To this end, both the transformation
and the generated �les are turned into hypertexts. Code is fragmented in terms
of 'traceable segment' (i.e. set of characters outputted by the enactment of the
same 'print', see later). Finally, both MOFScript print statements and 'traceable
segments' are turned into hyperlinks. In this way, debugging answers are just a
click away. Answers to questions such as 'which code does this print statement
generate?' or ' which print statement caused this traceable segment?' are high-
lighted by just clicking on the respective hyperlink. Figures 4 and 5 illustrate
two debugging scenarios:

1. Inspecting the output of a given 'print': which code snippet results from the
enactment of this 'print'? Click on the print statement ('Transformation'
textarea, line 56) and the answer is highlighted.

2. Tracing back a code snippet to its generator (i.e. 'print' statement), respec-
tively. Which 'print' statement causes this code snippet? Click on the code



Fig. 5. HandyMOF as a debugger assistant: from code to transformation

Fig. 6. HandyMOF as a testing assistant.



snippet ('Generated code' textarea, line 44) and the answer is highlighted
('Transformation' textarea, line 58).

The second utility is the role of HandyMOF as a coverage analysis assistant.
First, by identifying 'holes' in the Pramana generated model suite in terms of
'print' statements not yet visited by any input model. Second, by identifying the
smaller set of model inputs that provides the larger coverage (see later), hence
coming up with a minimal model suite which can speed up future testing. The
process starts by selecting 'all' as for the input model con�guration parameter
(see Figure 6). This triggers the algorithm for the obtainment of the minimal
model suite. The output is re�ected in two ways. First, it renders the model
identi�ers of such suite. Second, it aggregates the resulting trace models, collects
the visited 'print' statements, and in the inspection area highlights those 'print'
statements not yet transited. This helps developers to elaborate additional input
models to increase transformation coverage. As can be seen in Figure 6, when
<all> input models are selected, HandyMOF returns the minimal model suite
(right) and highlights those 'print' statements not yet covered by any input
model sample (left).

4 The HandyMOF Architecture

Fig. 7. HandyMOF 's Architecture

Figure 7 depicts the main
components and �ows of
HandyMOF. The Project Ex-
plorer handles the folder struc-
ture. Pramana provides in-
put models from the corre-
sponding metamodel. Finally,
HandyMOF consumes input
models and transformations
to obtain its own trace mod-
els, that complement MOF-
Script's native ones, and the
generated code �les.

An important question is
whether this approach can
be generalized to other M2T
transformation languages. Ba-
sically, HandyMOF rests on
two main premises. First, the
existence of a trace model
that links the input model with the generated code. Second, the existence of
a transformation metamodel (and the corresponding injector) that permits to
move from the transformation text to its corresponding transformation model,
and vice versa. Provided these characteristics are supported, HandyMOF could



be extended to languages other than MOFScript. Next subsections delve into the
main components of HandyMOF, namely the Trace Generator and the Minimal
Model Suite Finder.

4.1 Trace Generator

The goal of this component is to trace the input model, the generated code and
the M2T transformation. It leverages on the trace natively provided by MOF-
Script that links the input model with the generated code. The metamodel for
HandyMOF 's traces is �rst described, followed by how these traces are gener-
ated.

-ID : string
-name : string
-featureRef : string
-uri : string

ModelElementRef

-sourceOperationID : string
-sourceOperationName : string

Trace

-ID : string
-name : string
-URI : string

File

TraceableSegment

-ID : string
Block

1

-blocks

*

1

-traceablesegment *

-row : int
-column : int

Position

1

0..1

*

-startOffset/endOffset *

*
1

1

-segment

*

-ID : string
-name : string
-featureRef : string
-uri : string
-line : int
-column : int

TransformationElementRef

Trace

-ID : string
-name : string
-URI : string

File

TraceableSegment

-ID : string
Block

1

-blocks

*

1

-traceablesegment *

-row : int
-column : int

Position

1

0..1

*

*

*
1

1

-segment

*

startOffset/
endOffset

Fig. 8. MOFScript's Traceability Metamodel (left, obtained from [16]) and Handy-
MOF 's trace metamodel (right)

HandyMOF 's Trace Metamodel

MOFScript's trace metamodel de�nes a set of concepts that enable traceability
between source model elements and locations in generated text �les (see Figure 8
left) [12]. A trace contains a reference to the operation (transformation rule) that
generated the trace and references the originating model element and the target
traceable segment. The model element reference contains the 'id' and 'name' for
the originating element. It also contains a feature reference, which points out a
named feature within the model element (such as `name' for a property class).



On the other hand, the generated code �le is captured in terms of 'blocks'. Blocks
are identi�able units within a �le. A block contains a set of segments which are
relatively located within the block in terms of a starting and ending o�set.

This metamodel nicely captures traces from source model elements to the
generated code �le through traceable segments. Unfortunately, traceable seg-
ments are related to their transformation rule counterparts rather than to the
inner 'print' statements. We claim that a �ner granularity might help a more ac-
curate debugging in the presence of large transformation rules. On these grounds,
we complement the natively provided MOFScript trace model with our own
trace model where 'traceable segments' are linked back not just to transfor-
mation rules but to the transformation's 'print' statements. Figure 8 right de-
picts HandyMOF 's trace model. Di�erences stem from the granularity of trace-
able segments. MOFScript traceable segments account for rule enactments. In
HandyMOF, these segments are now partitioned into �ne-grained segments: one
for each enacted 'print' statement. Figure 9 illustrates the two complementary
traces for a simple case: between model and code (above) and between transfor-
mation and code (below). In this case, as the 'println' is composed of seven parts,
seven traces will be given, one for each. As the 'print' is executed three times
(one to create a location for a conference, one for an hotel and the other for a
restaurant), we can see that those traces are tripled. The position of the 'print' in
the transformation to be the same, as captured in TransformationModelElement.

Obtaining Trace Models in HandyMOF

The process starts by generating the test model suite, in our case this is achieved
using Pramana. Once the model suite is obtained the next step is to link the
M2T transformation with the code that is generated from these models. The
�rst obstacle rests on the generated code being plain text, so that the trace
model links the transformation elements with the position where the related code
fragment starts (see Figure 8 right). This position can be di�erent depending
on the input model and depends on the execution �ow. As a case in point,
imagine an if-then-else statement in the transformation. Each branch may have
a di�erent number of 'print' statements. As a consequence, the position where
the �rst statement after the 'if' starts may vary depending on the executed
branch. The same holds for loops, depending on the input model they may be
executed a di�erent number of times thus changing the position where the rest
of the statements start.

So additional information is required for a particular model, e.g. whether
a conditional instruction is true or false, or the number of iterations, to know
which speci�c statements have been executed and how many times. This data is
collected in a tracing �le.

Transformations are also models and can thus be analyzed or be the input
of another transformation. Therefore, in this proposal, the original M2T trans-
formation will be used to get internal information of its execution, and save it
in the execution trace model. More speci�cally, taking the original M2T trans-
formation as input, a Higher Order Transformation (HOT) transformation will



Fig. 9. Complementary trace model: between model and code (above) and between
transformation and code (below)



modify it, e.g. inserting counter variables in each iterator and �ags to mark con-
ditional instructions. As a result, this leveraged transformation not only outputs
the code but also the execution tracing model.

That execution tracing model, and the trace between the input model and
the generated code, along with the original M2T transformation, are used to get
the trace model between the M2T transformation and the code corresponding
to each input model. An ATL M2M transformation is in charge of this trace
generation, calculating the length of each 'print' from the transformation to set
the o�set values in the 'Segment' elements; and having into account how many
times each 'print' is executed.

4.2 The Minimal Model Suite Finder

In order to analyze the M2T transformation and to see to what extent its state-
ments have participated in the code generation, the use of input models is un-
avoidable. The goal is to get the input models that obtain a 100% coverage of the
transformation code. However, to the best of our knowledge no tool exists that,
given an input domain metamodel and a M2T transformation, generates the
models that provide full coverage of the transformation. As a result, we opted
for using Pramana (formerly known as Cartier) [16], a tool that implements
black-box testing for metamodels [16].

Are models generated by Pramana enough to obtain our goal? Pramana
serves engineers by generating model suites for metamodel coverage but its pur-
pose is not transformation coverage. However, transformations have embedded
semantics that need to be considered if the goal is the latter. Di�erent condi-
tions present in if statements or loops require speci�c test cases that may not be
generated if the criteria is merely metamodel coverage. As a case in point, the
if statement in Figure 2 (line 18) checks whether the Address corresponds to a
restaurant. Among the many test cases that can be generated from the meta-
model, this statement requires one with precisely that value in the description
attribute to obtain transformation coverage, which is not guaranteed if the gen-
eration of the test cases does not take the transformation into account. Hence,
as in program testing where black-box testing and white-box testing approaches
are used in concert, we need to cater for both metamodel and transformation
coverage.

The proposal of this work is the use of trace models for the analysis of
transformation coverage. What is needed is to link the code samples with the
transformation, via the tracing models obtained by the trace generator module.
We need to see how much coverage has been reached using the input models
generated by Pramana.

Hence, the task of the MinimalModelSuiteFinder module (see Figure 7) is to
quantify the transformation coverage, and to rule out those input models whose
transformation only enacts transformation statements that have already been
traversed by previous models. The goal of the module is then to minimize set of
input models and obtain the higher coverage percentage of the transformation
code (speci�cally, the 'print' instructions that generate the target code). We



name this set the minimal model suite. While not optimal, the presented greedy
algorithm permits to reduce the test suite size.

1 helper def : getModels (availableModels : Sequence(Trace!TraceModel), 
2    minimalModelSuite : Sequence(Trace!TraceModel),  
3    coveredPrints : Sequence(String)) : Sequence(Trace!TraceModel) =
4  minimalModelSuite->append(availableModels->select(e|self.bestModel(e, availableModels, coveredPrints))->first()),
5  coveredPrints->append(availableModels->select(e|self.bestModel(e, availableModels, coveredPrints))
6        ->first().trace ->collect(e|e.line))->flatten())
7   if coveredPrints.size() = self.numberOfLines or availableModels.size()=0 then
8       minimalModelSuite
9   else
10     self.getModels(availableModels->excluding(availableModels->select(e|self.bestModel(e, availableModels,
11     coveredPrints))->first())
12  endif ;

Fig. 10. Minimal model suite algorithm (main rule)

Figure 10 shows one of the functions of the algorithm used in obtaining this
suite. It is a recursive function that �nishes when all lines are covered or there
are not more input models to use (line 7). The algorithm can be summarized as
follows:

1. The best model is added to the list of selected models (minimalModelSuite)
(line 4).

2. The prints covered by the best model are added to the list of covered prints
(coveredPrints) (lines 5-6).

3. The best model (i.e., the one that covers most prints) is excluded from the
available models (availableModels) (lines 10-11).

Using these two modules the interface of HandyMOF can be used to check the
correspondence between the M2T transformation and the generated code, be it
on a single instance (see Figure 5) or for the complete model suite to check the
obtained coverage (see Figure 6).

5 Related work

This work sits inbetween testing and traceability for M2T transformations. Test-
ing wise, no standard or well established proposal exists for M2T transforma-
tion testing [17]. Wimmer et al. present an extension of tracts [7] to deal with
model-to-text transformations [18]. Their approach is complementary to ours as
it focuses on black-box testing (i.e., it considers the speci�cation of the trans-
formation, not its implementation). Our work highlights the complementariness
of black-box and white-box testing techniques. Black-box testing approaches do
not capture the mechanics of the transformation [1], which is precisely where
we intend to aid. McQuillan et al. propose white-box coverage criteria for trans-
formations [11]. Although their work centers in ATL [9] (i.e., a model-to-model
transformation), their coverage criteria could be applicable to our case as well.



We focus on instruction coverage (more precisely on coverage of instructions that
produce an output in the generated code). Gonzalez et al. present a white-box
testing approach for ATL transformations [8]. It follows a traditional white-box
testing strategy where input models are created based on the inner structure
of the transformation. This involves a coupling between the approach and the
transformation language. This might not be problem for M2M transformation
languages (where ATL has become de facto standard) but rises portability issues
for M2T transformations where no predominant language exists. This is why we
opt for a mixed approach where input models are generated using black-box
testing on the search for transformation-language independence. This approach,
albeit less precise, can be applied to any language provided adequate traces can
be obtained. This moves us to traceability.

Fig. 11. Traceability comparison.

Table of Figure 11 compares main M2T tools and their traceability support.
Values are obtained from the literature or grasped from videos or forums. Com-
parison is set in terms of trace availability for model-to-code, transformation-to-
code and transformation-to-model. The underlying mechanisms and the pursued
aim is also included. Within the model-to-code and transformation-to-code op-
tions, a 'block' is nothing more than a piece of code, i.e. an identi�able unit
within a �le. In these proposals, code blocks to generate and to be traced must
be delimited by special keywords in the transformation. When 'code' is indicated
in the table, there is a traceability but no information about the underlying de-
tails.

Mof2Text speci�cation (i.e. the OMG standard for MOF M2T Transforma-
tion Language) [13] provides support for tracing model elements to text parts.
Speci�cally, a trace block relates text that is produced in a block to a set of
model elements. Some text parts may be marked as protected in order to be
preserved and not overwritten by subsequent M2T transformations. MOFScript
implements that proposal and handles the traceability between generated text
and the original model, aiming to be able to synchronize the text in response to



model changes and vice versa. MOFScript does not specify any language-speci�c
mechanisms to support traceability, but a metamodel manages the traces from
a source model to target generated text �les. Central in this trace model is the
logical segmentation of a �le into blocks; thus, a trace contains a reference to the
transformation rule that generated the trace and references to the originating
model element and to the target traceable segment.

Another implementation of OMG's M2T speci�cation is the Acceleo code
generator. Acceleo Pro Traceability 3, a tool complementary to the generator,
enables round trip-support: updates in the model or the code are re�ected in
the connected artefacts. Since this is a commercial tool, restricted information
describing the solution is available.

Epsilon 4 is a platform for model management where several task-speci�c lan-
guages are integrated, among them one is Epsilon Generation Language (EGL),
which is a template-based code generator, i.e. their proposal for M2T trans-
formations. EGL provides a traceability API that facilitates exploration of the
executed templates, a�ected �les and protected regions that are processed dur-
ing a transformation. Like previous work, this tool does not have support for
transformation coverage either.

As far as we know, the Xtend language does not create traces automatically.
And last but not least, JET 5, Velocity 6, and StringTemplate 7 are other M2T
languages, that with JSP-like or Java-based templates render source code in-
cluding java, HTML, XML, SQL, and so on. No information has been found
about traceability in these platforms.

6 Conclusions

This work presented a proposal for white-box testing of M2T transformations.
Due to the heterogeneity of M2T transformation languages, the test suite is
generated using black-box testing and then, the generated code is traced back
to the transformation and the input model. Main outcomes include: (1) if a
bug is detected in the generated code, it can be traced back to the generating
'print' statement, (2) each generator statement (i.e., 'print') can be traced to
the generated code line, and (3) the transformation coverage obtained by the
test model suite can be calculated in terms of visited 'prints'. If the obtained
coverage is not complete, the developer can create input models that cover the
missing transformation lines. This is realized in HandyMOF, a tool for debugging
MOFScript transformations.

This proposal could be generalized for any transformation language ful�lling
our both premises, namely, the existence of a transformation metamodel (and
its injector) and a trace model linking the input model with the generated code.

3 http://www.obeo.fr/pages/obeo-traceability/en
4 https://www.eclipse.org/epsilon/
5 https://www.eclipse.org/modeling/m2t/?project=jet
6 http://veloedit.sourceforge.net/
7 http://sourceforge.net/projects/hastee/



The part of the tool that would need to be reimplemented in case of exporting
the idea to other languages is the trace generation module, that would have to
be adapted to language structures of the new transformation language. Both the
interface and the coverage analysis are reusable.

Future work includes guiding transformation developers in creating the miss-
ing input models from the unvisited 'prints'. We also contemplate integrating
HandyMOF with other testing approaches to provide an integrated solution.

Acknowledgments.

This work is co-supported by the Spanish Ministry of Education, and the Eu-
ropean Social Fund under contract TIN2011-23839. Jokin enjoyed a grant from
the Basque Government under the �Researchers Training Program�. We thank
Cristóbal Arellano for his help developing HandyMOF, and the reviewers for
their comments.

References

1. Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert B. France, Yves Le Traon,
and Jean-Marie Mottu. Barriers to Systematic Model Transformation Testing.
Communications of the ACM, 53(6):139�143, 2010.

2. Boris Bezier. Software Testing Techniques. New York : Van Nostrand Reinhold,
1990.

3. Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon.
Metamodel-based Test Generation for Model Transformations: an Algorithm and a
Tool. In 17th International Symposium on Software Reliability Engineering (ISSRE
2006),Raleigh, USA, 2006.

4. Juan José Cadavid, Benoit Baudry, and Houari A. Sahraoui. Searching the Bound-
aries of a Modeling Space to Test Metamodels. In 5th International Conference
on Software Testing, Veri�cation and Validation (ICST 2012), Montreal, Canada,
2012.

5. Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon. Quali-
fying Input Test Data for Model Transformations. Software and System Modeling
(SoSyM), 8(2):185�203, 2009.

6. Frank Fleurey, Jim Steel, and Benoit Baudry. Validation in Model-driven Engi-
neering: Testing Model Transformations. In 1st International Workshop on Model,
Design and Validation (SIVOES-MoDeVa 2004), Rennes, France, 2004.

7. Martin Gogolla and Antonio Vallecillo. Tractable Model Transformation Testing.
In 7th European Conference on Modelling Foundations and Applications (ECMFA
2011), Birmingham, UK, 2011.

8. Carlos A. González and Jordi Cabot. ATLTest: A White-Box Test Generation Ap-
proach for ATL Transformations. In 15th International Conference Model Driven
Engineering Languages and Systems (MODELS 2012), Innsbruck, Austria, 2012.

9. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A Model
Transformation Tool. Science of Computer Programming (SCP), 72(1-2):31�39,
2008.



10. Jochen M. Kuster and Mohamed Abd-El-Razik. Validation of Model Transfor-
mations - First Experiences using a White Box Approach. In 3rd International
Workshop on Model Development, Validation and Veri�cation (MoDeVa 2006),
Genova, Italy, 2006.

11. Jacqueline A. McQuillan and James F. Power. White-Box Coverage Criteria for
Model Transformations. In 1st International Workshop on Model Transformation
with ATL (MtATL 2009), Nantes, France, 2009.

12. Gøran K. Olsen and Jon Oldevik. Scenarios of Traceability in Model to Text Trans-
formations. In 3rd European Conference on Model Driven Architecture-Foundations
and Applications (ECMDA-FA 2007), Haifa, Israel, 2007.

13. OMG. MOF Model to Text Transformation Language, v1.0. Formal Speci�cation,
January 2008. Online at: http://www.omg.org/spec/MOFM2T/1.0/PDF.

14. OMG. Query/View/Transformation, v1.1. Formal Speci�cation, January 2011.
Online at: http://www.omg.org/spec/QVT/1.1/PDF/.

15. Gehan M. K. Selim, James R. Cordy, and Juergen Dingel. Model Transforma-
tion Testing: The State of the Art. In 1st Workshop on the Analysis of Model
Transformations (AMT 2012), Innsbruck, Austria, 2012.

16. Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On Combining Multi-formalism
Knowledge to Select Models for Model Transformation Testing. In 1st Interna-
tional Conference on Software Testing, Veri�cation, and Validation (ICST 2008),
Lillehammer, Norway, 2008.

17. Alessandro Tiso, Gianna Reggio, and Maurizio Leotta. Early Experiences on Model
Transformation Testing. In 1st Workshop on the Analysis of Model Transforma-
tions (AMT 2012), Innsbruck, Austria, 2012.

18. Manuel Wimmer and Loli Burgueño. Testing M2T/T2M Transformations. In 16th
International Conference on Model-Driven Engineering Languages and Systems
(MoDELS 2013), Miami, USA, 2013.


